
Team 13 Final Project Design

Team Number: ​13

Team Members
Chance Penner, Haonan Hu, Markus Becerra, Thomas Gardner, Ziwen Wang

Project Name
AuxSwap

Project Synopsis
Web application connecting Spotify users, enabling in-sync music listening and social chat
functionality for seamless music sharing.

Project Description
This project is being undertaken to provide an interactive and social music sharing experience.
We feel that AuxSwap will provide users with a unique social experience, with a strong focus on
music sharing. The two main features of our project are chat rooms and party lobbies. With chat
room functionality, this allows for social sharing of songs with friends. Create your own chat
rooms with friends to begin discussing new music and share your favorite songs. Built in song
sharing allows for easy song playing without even leaving the app. Party lobbies will host a
room where AuxSwap users can add songs to the room’s queue. Users will have the option to
listen in to the current lobby. The end result of this project will be a fully implemented music
sharing application, developed for the web, giving users the ability to chat with friends, share
songs, and listen together with ease.

Project Milestones

Milestone Description Date

Semester 1

Make Gantt Chart Create Gantt chart and assign tasks to team members Oct 5, 2020

Project Proposal Create Project Proposal document and video Oct 26, 2020

Familiarize with Tech Stack Research the Tech Stack to understand how it works Dec 4, 2020

Create UI Mockup Create a rough draft UI mockup. Dec 4, 2020

Semester 2

Implement Spotify sign-in Allow users to link their Spotify accounts Jan 12, 2021

Implement in-app music playing Utilize Spotify API to allow users to stream Spotify songs in-app Feb 28, 2021

Implement chat functionality Create group chat functionality for sharing and playing music Mar 31, 2021

Implement Party Lobbies Users can join different rooms to listen to songs with others Mar 31, 2021

Redesign and implement UI Finalize UI decisions and implement UI to app Apr 10, 2021

Gantt Chart

Project Budget

Final Project Design

How the software works

AuxSwap will be a web application. We will be using ReactJS. Operating on a GitHub

repository, our team will be able to program and implement all of the features collaboratively.

We will incorporate music streaming and sharing into our application using the Spotify API. We

can access Spotify playlists, search tracks, and more. Users will be greeted to our app by a

login screen for Spotify. Once a user is logged in, our app is able to have functionality of their

Spotify application. We will have access to certain user information and allow the app to control

the user’s Spotify playback. The main features of our app will be the Party Lobbies and chat

functionality.

The Party mode will allow a user to join a room, and other users will be able to connect

to this said room. Users then can add to the room’s queue so each user has input into what will

be played during the listening session. Each user will have the option to control playback of the

room from their account, so if you are at a party, lets say, you will be able to mute the audio but

still have the ability to queue songs. Users can also choose what device to play music from

using the Spotify Connect API. If time allots, we will implement the ability to run/host several

rooms and also integrate host features. Host features will include the maximum amount of

songs that can be added by a user, allowed genres, if explicit songs can be added, etc.

Chat functionality will allow multiple users to chat about anything and share music.

Within a chat room, users have the ability to play shared songs in the app, rather than taking

Item Cost Required Date

Website Domain ~$20 April 1, 2021

them out of the app. Songs can easily be found and shared utilizing the search functionality.

This will make users more connected to AuxSwap as it can be used to chat, share, and play

music, all in one location. Perfect for many use cases.

Utilizing these capabilities in the features of our app, the user experience will be

seamless (without any disrupting login or confirmation screens). The Spotify API requires that

we include certain metadata and artist information wherever we are streaming music. We will be

careful in verifying that we are not violating any intellectual property of Spotify or Spotify artists.

In order to safely store user data for the messaging portions of our app, we will use Amazon

Web Services (AWS). By storing user data and private messages in the cloud, we keep this

data away from potential threats to our application’s security.

Our tech stack consists of a React JS front-end, which will call functions from the middleware
(Node JS backend) to store data in the secure database.

Technical Constraints

Framework and Programming Language

We have chosen to use ReactJS for AuxSwap. This decision was made due to how

efficient and useful ReactJS is, as well as the plethora of learning resources available. This

means many of the team members will have to learn React, which will use up some of our

development time. However, it should prove to be much simpler than other choices and

ultimately will provide us with all the necessary tools to create a great web application.

For AuxSwap, we will also be using the Spotify API. This means that we have decided

on the sole music streaming application that we will use, with no ability to add another. Also, this

will limit AuxSwap to only be available to users that have Spotify Premium, since that is a

requirement of the Spotify API. This will of course limit the amount of users that can use our

application, but it is a necessary requirement in order to utilize the Spotify API.

This shows the flow of user login with the Spotify API.

The Spotify API user authorization flow chart shows how to refresh an access token for a given
user.

Our AuxSwap Spotify authorization page, verifying that the user grants our team access to their
Spotify data.

Platforms

Our platform of choice is purely web. We are primarily focusing on a web application as

this will allow for ease of sharing the application without having to have a finished and polished

mobile app on the app store. We decided not to also create a mobile application due to

concerns regarding budget, privacy, and even legal concerns with publishing an application

made with the Spotify API. By focusing solely on a web-based application, we can ensure that

we can meet our deadline.

Another concern with using the Spotify API is that there are many guidelines within the

terms of service that we must abide by. This means doing things such as using the Spotify logo

correctly and placing the necessary metadata in each of our features, ensuring the UI and

styling of AuxSwap fits the required guidelines required by Spotify, and other more trivial

guidelines. This can be quite tedious, but of course is necessary.

Business Constraints

Schedule

Since the final delivery date is fixed at April 21, 2021, we need to make good use of our

time to meet all of our requirements by this time. Once the deadline arrives, we will not be able

to make any more changes prior to our project presentation. We will want to make sure we can

not only meet our product’s design requirements, but also our presentation requirements, such

as our final proposal video and all related documentation and charts.

Budget
We did not set out to create a revenue generating product, but rather something for fun

and free use. Of course, this relies on the capabilities of the free version of Amazon AWS and

the Spotify API, so if AuxSwap were to become incredibly popular, then this may not be as

sustainable. Generating a revenue stream would be quite difficult for this project. First, we would

need to apply to build a commercial app and get approval from Spotify to do so. Then, we would

need to decide on a method of generating an income, such as advertisements. Again, we would

need to get permission from Spotify to be allowed to use their API to generate an income, and

especially for having ads in our product. Our main concern is not to make money, but to be able

to sustain the application’s costs, such as Amazon AWS. But, if spotify does not allow us to earn

revenue with their API, we need to come up with a legal way to get funded in order to sustain

AWS services. Thus, legal consideration could be extremely constraining.

Ethical issues

Illicit usage

An ethical issue AuxSwap will be facing is that it may be used as a tool for inciting or

spreading illegal or harmful content since chatting is the primary function of AuxSwap. To

defend and respect users' freedom of speech and prevent illicit usages that could occur on

AuxSwap, we could consider a step that could be taken to create a positive and enjoyable

environment. According to the Entertainment Software Rating Board guideline, some strong

violent words could be automatically filtered out as the code build-in, and the user will only send

out the string after appropriate replacement by AuxSwap.

User’s privacy

Another ethical issue AuxSwap will be facing is that it may disclose sensitive information.

It is quite understandable to assume that the user information on AuxSwap could be disclosed

for some unintended purpose, since AuxSwap is a web-based application, all the data

transformations rely heavily on the internet. Even though AuxSwap is based on the Spotify API,

which is quite reliable sources, however, to keep our user safe on using AuxSwap at all time,

basic precautions will be implemented to prevent any privacy issues from arising. Moreover, by

keeping an object-oriented programming style on most AuxSwap source code, which can

achieve more reliability of handling with unintended behaviors.

Intellectual Property issues

Spotify API

Throughout this project, we will be utilizing the Spotify API to play music from each

user’s device. The Spotify website clearly notes “by using Spotify developer tools, you accept

the Spotify Developer Terms of Service”. These terms of service outline the limitations of the

API and outline the features that API users are eligible to use. We must be responsible with our

use of Spotify’s code base, and ensure that we give credit wherever is needed. We cannot “use

or register any trademark or domain name that includes the word ‘Spotify,’ any other Spotify

trademark, or any name that is confusingly similar to any of them” We must name our features

something dissimilar to “Spotify” to avoid harming Spotify’s intellectual property. We have to

ensure that the use of the Spotify API would not harm or put Spotify at a disadvantage in any

way.

Changelog

● Removed the “Battle” mode as this feature is the weakest of the three and we wanted to

ensure that we could get everything done as best as we could. By removing this feature,

we now are confident in our ability to create a polished product by the deadline.

● Switched from Ionic Framework to ReactJS. This change was made because React has

more learning resources, a smaller learning curve, and proved to be just as efficient for

this project.

● Changed due dates of milestones to better reflect the updated Gantt Chart.

● Switched to web only for our project, since React does not support the multi-platform

model that the Ionic Framework does.

● Removed app-related budget costs, since our app is now web only.

